19-24 | Experimental Study of Ternary Pd-Zn-Se Phase Equilibria and Pd/ZnSe Bulk Diffusion | F. Goesmann, T. Studnitzky and R. Schmid-Fetzer |
25-37 | A Thermodynamic Description for the Al-Cu-Zn System | H. Liang and Y.A. Chang |
38-48 | New Thermodynamic Data for Liquid Aluminum-Magnesium Alloys from emf, Vapor Pressures, and Calorimetric Studies | Z. Moser, W. Zakulski, K. Rzyman, W. Gasior and Z. Panek, et al. |
49-55 | The Lesser-Known B-Ln (Boron-Lanthanide) Systems: B-Dy (Boron-Dysprosium), B-Ho (Boron-Holmium), B-Lu (Boron-Lutetium), B-Pr (Boron-Praseodymium), B-Tm (Boron-Thulium), and B-Yb (Boron-Ytterbium) | M.E. Schlesinger |
56-63 | An Updated Evaluation of the Fe-Gd (Iron-Gadolinium) System | W. Zhang, C. Li, X. Su and K. Han |
64-66 | The Cs-Sn (Cesium-Tin) System | J. Sangster and C.W. Bale |
67-69 | The K-Sn (Potassium-Tin) System | J. Sangster and C.W. Bale |
70-75 | The Li-Sn (Lithium-Tin) System | J. Sangster and C.W. Bale |
76-81 | The Na-Sn (Sodium-Tin) System | J. Sangster and C.W. Bale |
82-85 | The Rb-Sn (Rubidium-Tin) System | J. Sangster and C.W. Bale |
86 | Al-Ge (Aluminum-Germanium) | H. Okamoto |
87 | C-Nb (Carbon-Niobium) | H. Okamoto |
88 | C-Ta (Carbon-Tantalum) | H. Okamoto |
89 | C-Ti (Carbon-Titanium) | H. Okamoto |
90 | Cd-Sc (Cadmium-Scandium) | H. Okamoto |
92 | Cr-P (Chromium-Phosphorus) | H. Okamoto |
93 | Mn-Zr (Manganese-Zirconium) | H. Okamoto |
2 | Editorial | J.F. Smith |
5 | Comments on the Li-Sr system | Cezary Gumiński |
6-15 | Comparison of experimental and simulated multicomponent Ni-base superalloy diffusion couples | C. E. Campbell, J-C. Zhao and M. F. Henry |
16-21 | A study of the cu clusters using gray-coded genetic algorithms and differential evolution | N. Chakraborti, P. Mishra and Ş. Erkoç |
22-52 | Ternary rare-earth aluminum systems with copper: A review and a contribution to their assessment | P. Riani, L. Arrighi, R. Marazza, D. Mazzone and G. Zanicchi, et al. |
53-58 | Pyrolysis effect of group V vapor sources on the composition ranges for metal-organic vapor phase epitaxy growth of III-V semiconductors | Changrong Li, Weijing Zhang and Fuming Wang |
59-67 | Experimental study of the Bi2O3-Fe2O3 pseudo-binary system | A. Maître, M. François and J. C. Gachon |
68-74 | Thermodynamic assessment of the Ni-Ga system | W. X. Yuan, Z. Y. Qiao, Herbert Ipser and Gunnar Eriksson |
75 | Phase diagram evaluations |
76 | Addendum ternary iron phase diagram updates | V. Raghavan |
77-78 | As-Fe-Ga (arsenic-iron-gallium) | V. Raghavan |
79-80 | Au-Fe-Sn (gold-iron-tin) | V. Raghavan |
81-82 | Cd-Fe-Se (cadmium-iron-selenium) | V. Raghavan |
83-84 | Cu-Fe-Se (copper-iron-selenium) | V. Raghavan |
85-86 | Fe-Ga-Sb (iron-gallium-antimony) | V. Raghavan |
87-88 | Fe-In-Te (iron-indium-tellurium) | V. Raghavan |
89-91 | Fe-Ni-Sb (iron-nickel-antimony) | V. Rahavan |
92-93 | Fe-Sb-Ti (iron-antimony-titanium) | V. Raghavan |
94-95 | Fe-Se-Tl (iron-selenium-thallium) | V. Raghavan |
96 | Fe-Te-Tl (iron-tellurium-thallium) | V. Raghavan |
97 | Supplemental literature review | H. Okamoto |
98-99 | Ce-Si (cerium-silicon) | H. Okamoto |
100 | Fe-Ga (iron-gallium) | H. Okamoto |
101-102 | Fe-H (iron-hydrogen) | H. Okamoto |
103 | In-Ir (indium-iridium) | H. Okamoto |
110 | Computational materials science |
111-112 | Guest editorial | Tetsuo Mohri |
115-121 | (Sn-Ag)eut+Cu soldering materials, part I: Wettability studies | W. Gasior, Z. Moser, J. Pstruś, K. Bukat and J. Sitek, et al. |
122-124 | (Sn-Ag)eut+Cu soldering materials, part II: Electrical and mechanical studies | K. T. Jacob and K. P. Jayadevan |
125-133 | Phase relations in the system Cu-Eu-O and thermodynamic properties of CuEu2O4 and CuEuO2 | R. Kisiel, W. Gasior, Z. Moser, J. Pstruś and K. Bukat, et al. |
134-139 | Evaluation of the invariant reactions of the V-B system | Belmira Benedita de Lima, Gilberto Carvalho Coelho, Paulo Atsushi Suzuki, Carlos Angelo Nunes and Peter Rogl |
140-151 | Phase equilibria and thermodynamics of the Mg-Si-Li system and remodeling of the Mg-Si system | D. Kevorkov, R. Schmid-Fetzer and F. Zhang |
152-159 | Evaluation of phase relations in the Nb-Cr-Al system at 1000°C using a diffusion-multiple approach | J. -C. Zhao, M. R. Jackson and L. A. Peluso |
160 | Phase diagram evaluations |
161 | Addendum: Ternary and higher order iron phase diagram updates |
162 | Al-Dy-Fe (Aluminum-Dysprosium-Iron) | V. Raghavan |
163 | Al-Er-Fe (Aluminum-Erbium-Iron) | V. Raghavan |
164 | Al-Fe-Ho (Aluminum-Iron-Holmium) | V. Raghavan |
165 | Al-Fe-Tb (aluminum-iron-terbium) | V. Raghavan |
166-167 | Ce-Fe-P (cerium-iron-phosphorus) | V. Raghavan |
168 | Dy-Fe-Mn (dysprosium-iron-manganese) | V. Raghavan |
169-170 | Dy-Fe-Tb (dysprosium-iron-terbium) | V. Raghavan |
171 | Fe-La-Ni (iron-lanthanum-nickel) | V. Raghavan |
172-173 | Fe-La-P (iron-lanthanum-phosphorus) | V. Raghavan |
174 | Fe-Mn-Tb (iron-manganese-terbium) | V. Raghavan |
175 | Fe-P-Y (iron-phosphorous-yttrium) | V. Raghavan |
176-177 | Co-Dy-Fe-Sm (cobalt-dysprosium-iron-samarium) | V. Raghavan |
178-179 | Co-Fe-Nd-Sm (cobalt-iron-neodymium-samarium) | V. Raghavan |
180-182 | Co-Fe-Pr-Sm (cobalt-iron-praseodymium-samarium) | V. Raghavan |
183-190 | The Cu-Ni-Pd (copper-nickel-palladium) system | K. P. Gupta |
191-194 | The Mg-Ni-Pd (magnesium-nickel-palladium) system | K. P. Gupta |
195 | Supplemental literature review | H. Okamoto |
196 | Al-Ru (aluminum-ruthenium) | H. Okamoto |
197-198 | Au-In (gold-indium) | H. Okamoto |
199-200 | H-Sm (hydrogen-samarium) | H. Okamoto |
201 | In-Se (indium-selenium) | H. Okamoto |
494 | Editorial | Zbigniew Moser |
496 | Addendum |
497-506 | Crystallography and phase equilibria a review: Part II—Space groups and structure | J. F. Smith |
507-514 | Phase relations in the Nb-Pd-Hf-Al system | A. Misra, G. Ghosh and G. B. Olson |
515-519 | Thermodynamics of phase changes in systems BaS-Ln2S3 (Ln=Pr, Sm, Gd, Tb, Er, Lu) | N. A. Khritohin, O. V. Andreev, O. V. Mitroshin and A. S. Korotkov |
520-527 | Thermodynamic evaluation of the Al-H system | Caian Qiu, Gregory B. Olson, Susanne M. Opalka and Donald L. Anton |
528-537 | Solid-liquid phase equilibria in the Al-Fe-Si system at 727 °C | S. Pontevichi, F. Bosselet, F. Barbeau, M. Peronnet and J. C. Viala |
538 | Phase diagram evaluations |
539 | Addendum ternary and higher order iron phase diagram updates | V. Raghavan |
540 | As-Fe-Ni (Arsenic-Iron-Nickel) | V. Raghavan |
541-542 | C-Fe-P (Carbon-Iron-Phosphorus) | V. Raghavan |
543 | Co-Cu-Fe (Cobalt-Copper-Iron) | V. Raghavan |
544 | Cr-Cu-Fe (Chromium-Copper-Iron) | V. Raghavan |
545-546 | Cr-Fe-Si (Chromium-Iron-Silicon) | V. Raghavan |
547-549 | Cu-Fe-Ni (Copper-Iron-Nickel) | V. Raghavan |
550 | Fe-Gd-Mo (Iron-Gadolinium-Molybdenum) | V. Raghavan |
551 | Fe-Ho-Sb (Iron-Holmium-Antimony) | V. Raghavan |
552 | Fe-Nb-Ni (Iron-Niobium-Nickel) | V. Raghavan |
553 | Fe-Ni-Sb (Iron-Nickel-Antimony) | V. Raghavan |
554-555 | Cr-Fe-Nb-Ni (Chromium-Iron-Niobium-Nickel) | V. Raghavan |
556-557 | Cs-N (Cesium-Nitrogen) | James Sangster |
558-559 | K-N (Potassium-Nitrogen) | James Sangster |
560-563 | N-Na (Nitrogen-Sodium) System | James Sangster |
564-565 | N-Rb (Nitrogen-Rubidium) | James Sangster |
566-569 | The Co-Mn-V (Cobalt-Manganese-Vanadium) System | K. P. Gupta |
570 | Supplemental literature review | H. Okamoto |
571-572 | Co-Ta (Cobalt-Tantalum) | H. Okamoto |
573 | Ga-Pb (Gallium-Lead) | H. Okamoto |
106-107 | Editorial | J. -C. Zhao |
109-114 | Phase equilibria in the BaS-Ln2S3 systems | O. V. Amdreev, P. V. Miodushevscy, R. Serlenga and N. N. Parsukov |
115-123 | Experimental determination of NH4NO3-KNO3 binary phase diagram | W. -M. Chien, D. Chandra, A. K. Helmy, J. Franklin and C. J. Rawn |
124-130 | Thermodynamic properties of 1-nutyl-3-methylimidazolium chloride (C4mim[Cl]) ionic liquid | Mingming Zhang, Venkat Kamavaram and Ramana G. Reddy |
131-151 | Assessment of the La-Mn-O system | A. Nicholas Grundy, Ming Chen, Ludwig J. Gauckler and Bengt Hallstedt |
152-160 | A revised thermodynamic description of the Co-W-C system | A. Markström, K. Frisk and B. Sundman |
161-168 | Experimental studies and thermodynamic optimization of the Ni-Bi system | G. P. Vassilev, X. J. Liu and K. Ishida |
169 | Phase diagram evaluations |
170 | Addendum ternary and higher order aluminum phase diagram updates | V. Raghavan |
171-172 | Al-Ti (Aluminum-Titanium) | V. Raghavan |
173-174 | Al-B-Ti (Aluminum-Boron-Titanium) | V. Raghavan |
175-177 | Al-Co-Ti (Aluminum-Cobalt-Titanium) | V. Raghavan |
178-179 | Al-Dy-Ti (Aluminum-Dysprosium-Titanium) | V. Raghavan |
180 | Al-Er-Ti (Aluminum-Erbium-Titanium) | V. Raghavan |
181 | Al-Ga-Ti (Aluminum-Gallium-Titanium) | V. Raghavan |
182-183 | Al-Gd-Ti (Aluminum-Gadolinium-Titanium) | V. Raghavan |
184-185 | Al-Ho-Ti (Aluminum-Holmium-Titanium) | V. Raghavan |
186 | Al-Pd-Ti (Aluminum-Palladium-Titanium) | V. Raghavan |
187 | Al-Pr-Ti (Aluminum-Praseodymium-Titanium) | V. Raghavan |
188-189 | Al-Pt-Ti (Aluminum-Platinum-Titanium) | V. Raghavan |
190 | Al-Sb-Ti (Aluminum-Antimony-Titanium) | V. Raghavan |
191 | Al-Ti-Y (Aluminum-Titanium-Yttrium) | V. Raghavan |
192 | Al-Co-Cu-Ti (Aluminum-Cobalt-Copper-Titanium) | V. Raghavan |
193 | Al-Co-Fe-Ti (Aluminum-Cobalt-Iron-Titanium) | V. Raghavan |
194 | Al-Co-Ni-Ti (Aluminum-Cobalt-Nickel-Titanium) | V. Raghavan |
195 | Al-Cu-Ni-Ti (Aluminum-Copper-Nickel-Titanium) | V. Raghavan |
196 | Supplemental literature review | H. Okamoto |
197 | Co-Ga (Cobalt-Gallium) | H. Okamoto |
198 | Co-Sb (Cobalt-Antimony) | H. Okamoto |
199 | Dy-Mg (Dysprosium-Magnesium) | H. Okamoto |
200 | Dy-Sn (Dysprosium-Tin) | H. Okamoto |
206 | Editorial | R. R. de Avillez |
209-214 | The Pr-rich portion of the Ni-Pr system | M. Huang, D. Wu, K. W. Dennis, J. W. Anderegg and R. W. McCallum, et al. |
215-224 | Correlation and prediction of interface tension for fluid mixtures: An approach based on cubic equations of state with the wong-sandler mixing rule | Andrés Mejía, Hugo Segura, Jaime Wisniak and Ilya Polishuk |
225-233 | An assessment of thermodynamic data for the liquid phase in the Al-rich corner of the Al-Cu-Si system and its application to the solidification of a 319 alloy | X. M. Pan, C. Lin, H. D. Brody and J. E. Morral |
234-239 | Experimental investigation and thermodynamic calculation of binary Mg-Mn phase equilibria | J. Gröbner, D. Mirkovic, M. Ohno and R. Schmid-Fetzer |
240-253 | Thermodynamic approach to quantitative assessment of propensity of metallic melts to amorphization | A. I. Zaitsev and N. E. Zaitseva |
254 | Phase diagram evaluations |
255 | Addendum ternary and higher order aluminum phase diagram updates | V. Raghavan |
256-261 | Al-Mn-Ti (Aluminum-Manganese-Titanium) | V. Raghavan |
262-267 | Al-Ni-Si (Aluminum-Nickel-Silicon) | V. Raghavan |
268-272 | Al-Ni-Ti (Aluminum-Nickel-Titanium) | V. Raghavan |
273-275 | Al-Ni-V (Aluminum-Nickel-Vanadium) | V. Raghavan |
276-279 | Al-Ti-V (Aluminum-Titanium-Vanadium) | V. Raghavan |
280 | Al-Mn-Ni-Ti (Aluminum-Manganese-Nickel-Titanium) | V. Raghavan |
281-283 | Al-Ni-Ti-V (aluminum-nickel-titanium-vanadium) | V. Raghavan |
284-288 | The Ga-Ge-Ni (gallium-germanium-nickel) system | K. P. Gupta |
289 | Supplemental literature review | H. Okamoto |
290-291 | Ge-Yb (germanium-ytterbium) | H. Okamoto |
292 | La-O (lanthanum-oxygen) | H. Okamoto |
293-294 | N-Si (nitrogen-silicon) | H. Okamoto |
295-297 | Ni-Tb (nickel-terbium | H. Okamoto |
298-299 | Ta-V (tantalum-vanadium) | H. Okamoto |
406 | Guest editorial | Andreas Öchsner |
408-409 | APDIC awards: 2005 | Tim G. Chart |
411-416 | Cobalt diffusion in different microstructured WC-Co substrates during diamond chemical vapor deposition | G. Cabral, N. Ali, E. Titus and J. Gracio |
417-422 | Modeling silicon and aluminum diffusion in electrical steel | Jose Barros, Yvan Houbaert, Benny Malengier and Roger Van Keer |
423-429 | Parabolic vs linear interface shift on the nanoscale | Dezső L. Beke and Zoltán Erdélyi |
430-434 | Analysis of the formation of hollow nanocrystals: Theory and monte carlo simulation | I. V. Belova and G. E. Murch |
435-440 | A new technique for evaluating diffusion mobility parameters | C. E. Campbell |
441-446 | Analysis of multicomponent diffusion couples for interdiffusion fluxes and interdiffusion coefficients | Mysore A. Dayananda |
447-451 | A simple and inexpensive technique to measure molecular diffusion coefficients | J. M. P. Q. Delgado, M. A. Alves and J. R. F. Guedes de Carvalho |
452-457 | Tracer diffusion of niobium and titanium in binary and ternary titanium aluminides | Sergiy V. Divinski, Christian Herzig and Christian Klinkenberg |
458-465 | Self-diffusion in nanoscale structures measured by neutron reflectometry | Mukul Gupta, Thomas Gutberlet, Rachana Gupta and Ajay Gupta |
466-471 | Diffusion in high-purity iron: Influence of magnetic transformation on diffusion | Yoshiaki Iijima |
472-476 | Measurement of self-diffusion coefficients in Li ionic conductors by using the short-lived radiotracer of 8Li | Sun-Chan Jeong, Ichiro Katayama, Hirokane Kawakami, Yutaka Watanabe and Hironobu Ishiyama, et al. |
477-481 | Measurements of diffusion coefficients in porous solids by inverse gas chromatography | J. Kapolos, N. Bakaoukas, A. Koliadima and G. Karaiskakis |
482-486 | Atomic migration on ordering and diffusion in bulk and nanostructured FePt intermetallic | Rafal Kozubski, Miroslaw Kozlowski, Kinga Zapala, Veronique Pierron-Bohnes and Wolfgang Pfeiler, et al. |
487-493 | Internal corrosion of engineering alloys: Experiment and computer simulation | Ulrich Krupp and Hans J. Christ |
494-502 | Analyses of diffusion-related phenomena in steel process | Tooru Matsumiya |
503-509 | Sum-rule relationships among phenomenological coefficients: Simplifications for the analysis of segregation and chemical diffusion | I. V. Belova and G. E. Murch |
510-515 | Mössbauer investigation of Sn diffusion and segregation in grain boundaries of polycrystalline Nb | V. N. Kaigorodov, V. V. Popov, E. N. Popova, T. N. Pavlov and S. V. Efremova |
516-519 | Application of tritium radioluminography to the detection of hydrogen diffusion in Ti-Cr alloy | Hideyuki Saitoh and Hirofumi Homma |
520-528 | Kinetics of microstructure evolution during gaseous thermochemical surface treatment | Marcel A. J. Somers and Thomas Christiansen |
529-533 | The influence of doping by transition metal elements on the vacancy formation energy in Fe-Al B2 phase | Angelica Strutz, David Fuks and Arik Kiv |
534-538 | The influence of diffusion on hydrate growth | Atle Svandal, Bjørn Kvamme, Làszlò Grànàsy and Tamàs Pusztai |
539-546 | The role of grain boundary diffusion in initial selective oxidation kinetics of a manganese-aluminum TRIP steel | Casper Thorning and Seetharaman Sridhar |
547-554 | Self-diffusion and impurity diffusion in silicon dioxide | Masashi Uematsu |
555-560 | Kinetics of transformation during supersaturation and aging of the Al-4.7mass%Cu alloy: Grain size, dilatometric, and differential thermal analysis studies | Ignacy Wierszyłłowski, Andrzej Stankowiak, Sebastian Wieczorek and Jarosław Samolczyk |
561-564 | Diffusion of chromium, manganese, and iron in MnCr2O4 spinel | Jolanta Gilewicz-Wolter, Joanna Dudała, Zbigniew Żurek, Marta Homa and Jerzy Lis, et al. |
570 | Deconstruction and research |
573-578 | Unified description of interdiffusion in solids and liquids | Marek Danielewski and Bartłomiej Wierzba |
579-590 | Determination and assessment of ternary interdiffusion coefficients from individual diffusion couples | Kevin M. Day, Mysore A. Dayananda and L. R. Ram-Mohan |
591-604 | Phase equilibria and thermodynamic properties of the ZrO2-GdO1.5-YO1.5 system | O. Fabrichnaya, Ch. Wang, M. Zinkevich, F. Aldinger and C. G. Levi |
605-612 | Thermodynamic reassessment of the Cu-O phase diagram | L. Schramm, G. Behr, W. Löser and K. Wetzig |
613-615 | Calculations of phase diagrams in associated solution model | Konstantin Yu. Shunyaev |
616-621 | Thermodynamic optimization of the binary YbCl3-AECl2 (AE=Mg, Ca, Sr, Ba) systems | Yimin Sun, Yu Wang, Zhisen Ma, Xiangzhen Meng and Xinyu Ye, et al. |
622 | Phase diagram evaluations |
623 | Addendum: Ternary and higher order aluminum phase diagram updates |
624-628 | Al-Si-Ti (aluminum-silicon-titanium) | V. Raghavan |
629-634 | Al-Ta-Ti (aluminum-tantalum-titanium) | V. Raghavan |
635-637 | Al-Cr-Ni-Ti (aluminum-chromium-nickel-titanium) | V. Raghavan |
638 | Al-Nb-Si-Ti (aluminum-niobium-silicon-titanium) | V. Raghavan |
639-640 | Al-Ti-V-Zr (aluminum-titanium-vanadium-zirconium) | V. Raghavan |
641 | Supplemental literature review |
642 | C-U (carbon-uranium) | H. Okamoto |
643-644 | Ca-Pb (calcium-lead) | H. Okamoto |
645 | Cu-In (copper-indium) | H. Okamoto |
646 | Eu-Sn (europium-tin) | H. Okamoto |
647 | Hf-Mo (hafnium-molybdenum) | H. Okamoto |
648 | Hf-W (hafnium-tungsten) | H. Okamoto |
649 | Nb-Si (niobium-silicon) | H. Okamoto |
650 | Ni-Pr (nickel-praseodymium) | H. Okamoto |
651 | Be-Hg (beryllium-mercury) | C. Guminski and H. Okamoto |
2 | Guest editorial | Kiyohito Ishida and Tetsuo Mohri |
5-13 | Thermodynamic assessment of the Cu−Pt system | Taichi Abe, Bo Sundman and Hidehiro Onodera |
14-21 | Revolutionary microstructure control with phase diagram evaluation for the design of E21 Co3AlC-based heat-resistant alloys | Yoshisato Kimura, Kiichi Sakai and Yoshinao Mishima |
22-29 | Modeling of microstructure changes in Fe−Cr−Co magnetic alloy using the phase-field method | Toshiyuki Koyama and Hidehiro Onodera |
30-33 | Computational investigations of the bonding layer in CVD-coated WC+Co cutting tools | Zhi-Jie Liu, Charles McNerny, Pankaj Mehrotra, Yi-Xiong Liu and Zi-Kui Liu |
34-46 | Geometrical approach to reaction schemes of multicomponent phase diagrams | Seiji Miura |
47-53 | First-principles calculations of phase equilibria and transformation dynamics of Fe-based alloys | Tetsuo Mohri, Munekazu Ohno and Ying Chen |
54-62 | Experimental determination and thermodynamic calculation of phase equilibria in the Fe−Mn−Al system | R. Umino, X. J. Liu, Y. Sutou, C. P. Wang and I. Ohnuma, et al. |
63-74 | Thermodynamic study of the phase equilibria in the Sn−Ti−Zn ternary system | K. Doi, S. Ono, H. Ohtani and M. Hasebe |
75-82 | Phase equilibria and phase transformation of Co−Ni−Ga ferromagnetic shape memory alloy system | Katsunari Oikawa, Takuya Ota, Yousuke Imano, Toshiro Omori and Ryosuke Kainuma, et al. |
83-91 | Thermodynamic evaluation of the phase equilibria and glass-forming ability of the Ti−Be system | Tatsuya Tokunaga, Hiroshi Ohtani and Mitsuhiro Hasebe |
92-101 | Effect of Pd additions on the invariant reactions in the Ag−CuOx system | Jens T. Darsell and K. Scott Weil |
102-112 | Design criteria for high-temperature steels strengthened with vanadium nitride | V. A. Yardley and Y. de Carlan |
558 | Guest editorial | Yongho Sohn, Carelyn Campbell, John E. Morral and Richard D. Sisson |
561-565 | Reactive interdiffusion in the binary system Ni-Si: Morphology of the Ni3Si2 phase | D. Borivent, J. Paret and B. Billia |
566-571 | A transfer-matrix method for analysis of multicomponent diffusion with any number of components | L. R. Ram-Mohan and Mysore A. Dayananda |
572-581 | An examination of a multicomponent diffusion couple | Mysore A. Dayananda |
582-589 | Diffusional analysis of a multiphase oxide scale formed on a Mo-Mo3Si-Mo5-SiB2 alloy | Voramon S. Dheeradhada, David R. Johnson and Mysore A. Dayananda |
590-597 | Copper diffusion into silicon substrates through TaN and Ta/TaN multilayer barriers | N. Fréty, F. Bernard, J. Nazon, J. Sarradin and J. C. Tedenac |
598-604 | Carbon diffusion in steels: A numerical analysis based on direct integration of the flux | Olga Karabelchtchikova and Richard D. Sisson |
605-613 | Interdiffusion kinetics in the Mo5SiB2 (T2) phase | Sungtae Kim and John H. Perepezko |
614-621 | Irradiation-enhanced interdiffusion in the diffusion zone of U-Mo dispersion fuel in Al | Yeon Soo Kim, G. L. Hofman, Ho Jin Ryu and S. L. Hayes |
622-628 | Modeling of kinetics of diffusive phase transformation in binary systems with multiple stoichiometric phases | J. Svoboda, E. Gamsjäger, F. D. Fischer and E. Kozeschnik |
629-637 | Analysis of interdiffusion data in multicomponent alloys to extract fundamental diffusion information | I. V. Belova and G. E. Murch |
638-643 | Chemical diffusion in the iridium-richA1 andL12 phases in the Ir-Nb system | Hiroshi Numakura, Tatsuru Watanabe, Makoto Uchida, Yoko Yamabe-Mitarai and Eisuke Bannai |
644-650 | Adsorption and desorption of oxygen at metal-oxide interfaces: Two-dimensional modeling approaches | A. Öchsner, J. Grácio and M. Stasiek |
651-658 | Diffusion reaction behaviors of U-Mo/Al dispersion fuel | Ho Jin Ryu, Jong Man Park, Chang Kyu Kim, Yeon Soo Kim and Gerard L. Hofman |
659-664 | Interdiffusion analysis for NiAl versus superalloys diffusion couples | E. Perez, T. Patterson and Y. Sohn |
665-670 | Interdiffusion in γ (face-centered cubic) Ni-Cr-X (X=Al, Si, Ge, or Pd) alloys at 900 °C | Narayana Garimella, Yongho Sohn and M. P. Brady |
671-675 | Oxygen diffusion through Al-doped amorphous SiO2 | Yiguang Wang, Yongho Sohn, Linan An, Yi Fan and Ligong Zhang |
676-683 | Phase-field investigation of multicomponent diffusion in single-phase and two-phase diffusion couples | R. R. Mohanty and Y. Sohn |
684-690 | Internal carburization and carbide precipitation in Fe-Ni-Cr alloy tubing retired from ethylene pyrolysis service | A. Chauhan, M. Anwar, K. Montero, H. White and W. Si |
691-698 | Three-dimensional interdiffusion under stress field in Fe-Ni-Cu alloys | Marek Danielewski, Renata Bachorczyk-Nagy, Bartlomiej Wierzba and Maciej Pietrzyk |
699-706 | Modeling of the dynamics of transient liquid films in ternary systems | Hatem S. Zurob, Jinichiro Nakano and Gary R. Purdy |
1 | Guest Editorial | Y. Austin Chang, Rainer Schmid-Fetzer and Patrice E.A. Turchi |
2-8 | Thermodynamic and Microstructural Modeling of Nb-Si Based Alloys | Sundar Amancherla, Sujoy Kar, Bernard Bewlay, Yang Ying and Austin Chang |
9-22 | First-Principles Phase Stability Calculations of Pseudobinary Alloys of (Al,Zn)3Ti with L12, D022, and D023 Structures | Gautam Ghosh, Axel van de Walle and Mark Asta |
23-37 | Atomistic Modeling of Multicomponent Systems | G. Bozzolo and J.E. Garcés |
38-48 | Partial Thermodynamic Properties of γ′-(Ni,Pt)3Al in the Ni-Al-Pt system | Evan Copland |
49-57 | Thermodynamics of Hydrogen Solution and Hydride Formation in Binary Pd Alloys | Ted B. Flanagan and S. Luo |
58-63 | Alloy Thermal Physical Property Prediction Coupled Computational Thermodynamics with Back Diffusion Consideration | J. Guo and M. T. Samonds |
64-71 | On the Potential for Improving Equilibrium Thermodynamic Databases with Kinetic Simulations | E. Kozeschnik, I. Holzer and B. Sonderegger |
72-78 | Theoretical Investigation of Phase Equilibria for Metal-Hydrogen Alloy | Tetsuo Mohri |
79-89 | Configurational Entropies of Mixing in Solid Alloys | W. A. Oates |
90-100 | Thermodynamic Calculations and Phase Stabilities in the Y-Si-C-O System | Damian M. Cupid and Hans J. Seifert |
101-106 | CALPHAD and Phase-Field Modeling: A Successful Liaison | I. Steinbach, B. Böttger, J. Eiken, N. Warnken and S. G. Fries |
107-114 | Liquid-Solid Phase Equilibria in Metal-Rich Nb-Ti-Hf-Si Alloys | Y. Yang, B. P. Bewlay and Y. A. Chang |
115-120 | Development of Thermodynamic Description of a Pseudo-Ternary System for Multicomponent Ti64 Alloy | F. Zhang, S.-L. Chen, Y.A. Chang, N. Ma and Y. Wang |
121-129 | An Approach to Modeling Al2O3 Containing Slags with the Cell Model | L. Zhang, S. Sun and S. Jahanshahi |
130-138 | Modeling of Microstructure and Microsegregation in Solidification of Multi-Component Alloys | M.-F. Zhu, W. Cao, S.-L. Chen, C.-P. Hong and Y. A. Chang |
139 | “What Have We Been Doing?” | Bruce Harmon |
140-149 | Evolutionary and Genetic Algorithms Applied to Li+-C System: Calculations Using Differential Evolution and Particle Swarm Algorithm | N. Chakraborti, R. Jayakanth, S. Das, E. D. Çalişir and Ş. Erkoç |
150-157 | Thermodynamics of the Au-Si-O System: Application to the Synthesis and Growth of Silicon-Silicon dioxide Nanowires | Djamila Bahloul-Hourlier and Pierre Perrot |
158-166 | Modeling of Thermodynamic Properties and Phase Equilibria for the Cu-Mg Binary System | Shihuai Zhou, Yi Wang, Frank G. Shi, Ferdinand Sommer and Long-Qing Chen, et al. |
167-171 | Phase Diagram of Ternary Calcium Acetate—Magnesium Acetate—Water System at 298 K, 313 K and 323 K | Hong-Kun Zhao, Dao-Sen Zhang, Cao Tang, Pan-Ming Jian and Shi-Hai Yuan |
172 | Phase Diagram Evaluations | V. Raghavan |
173 | Ternary and Higher Order Aluminum Phase Diagram Updates | V. Raghavan |
174-179 | Al-Cu-Mg (Aluminum-Copper-Magnesium) | V. Raghavan |
180-182 | Al-Cu-Si (Aluminum-Copper-Silicon) | V. Raghavan |
183-188 | Al-Cu-Zn (Aluminum-Copper-Zinc) | V. Raghavan |
189-191 | Al-Mg-Si (Aluminum-Magnesium-Silicon) | V. Raghavan |
192-196 | Al-Mn-Si (Aluminum-Manganese-Silicon) | V. Raghavan |
197 | Al-Si-Zn (Aluminum-Silicon-Zinc) | V. Raghavan |
198-200 | Al-Cu-Mg-Si (Aluminum-Copper-Magnesium-Silicon) | V. Raghavan |
201-202 | Al-Mg-Mn (Aluminum-Magnesium-Manganese) | V. Raghavan |
203-208 | Al-Mg-Zn (Aluminum-Magnesium-Zinc) | V. Raghavan |
209-210 | Al-Cu-Fe-Si (Aluminum-Copper-Iron-Silicon) | V. Raghavan |
211-212 | Al-Cu-Mg-Zn (Aluminum-Copper-Magnesium-Zinc) | V. Raghavan |
213-214 | Al-Fe-Mg-Si (Aluminum-Iron-Magnesium-Silicon) | V. Raghavan |
215-217 | Al-Fe-Mn-Si (Aluminum-Iron-Manganese-Silicon) | V. Raghavan |
218-220 | Al-Cu-Fe-Mg-Si (Aluminum-Copper-Iron-Magnesium-Silicon) | V. Raghavan |
221-222 | Al-Fe-Mg-Mn-Si (Aluminum-Iron-Magnesium-Manganese-Silicon) | V. Raghavan |
223-225 | Al-Cu-Fe-Mg-Ni-Si (Aluminum-Copper-Iron-Magnesium-Nickel-Silicon) | V. Raghavan |
226-227 | Al-Cu-Mg-Sc-Zn-Zr (Aluminum-Copper-Magnesium-Scandium-Zinc-Zirconium) | V. Raghavan |
228 | Supplemental Literature Review | H. Okamoto |
229-230 | Mg-Si (Magnesium-Silicon) | H. Okamoto |
231-232 | Pd-Si (Palladium-Silicon) | H. Okamoto |
233 | Pd-Ta (Palladium-Tantalum) | H. Okamoto |
234 | Rh-Ti (Rhodium-Titanium) | H. Okamoto |
235 | Tb–Zn (Terbium–Zinc) | H. Okamoto |
236-237 | Zn-Zr (Zinc-Zirconium) | H. Okamoto |
321 | A Second Opportunity for Old “Friends”? | Antonio C. M. Sousa |
322-327 | The Grain-Boundary Diffusion of Zn in α-Fe | Jonathan S. Dohie, J.R. Cahoon and W.F. Caley |
328-334 | Thermodynamic Treatment of Undercooled Cu-Mg Liquid and the Limits for Partitionless Crystallization | S.H. Zhou and R.E. Napolitano |
335-341 | VisiMat-Software for the Visualization of Multicomponent Diffusion in Two and Three Dimensions | Christopher J. O’Brien and Afina Lupulescu |
342-354 | Critical Evaluation and Thermodynamic Optimization of the Binary Systems in the Mg-Ce-Mn-Y System | Youn-Bae Kang, Arthur D. Pelton, Patrice Chartrand, Philip Spencer and Carlton D. Fuerst |
355-361 | The 450 °C Isothermal Section of the Zn-Fe-Ti System | Xianhui Tang, Fucheng Yin, Xinming Wang, Jianhua Wang and Xuping Su, et al. |
362-368 | Thermodynamic Description of SrO-Al2O3{\hbox{SrO-Al}_{2}\hbox{O}_{3}} System and Comparison with Similar Systems | Xinyu Ye, Weidong Zhuang, Jingfang Wang, Wenxia Yuan and Zhiyu Qiao |
369 | Phase Diagram Evaluations |
370 | Ternary and Higher Order Iron Phase Diagram Updates | V. Raghavan |
371-373 | Al-Fe-Mn (Aluminum-Iron-Manganese) | V. Raghavan |
374-376 | Al-Fe-Pd (Aluminum-Iron-Palladium) | V. Raghavan |
377-379 | B-Fe-Ni (Boron-Iron-Nickel) | V. Raghavan |
380-381 | B-Fe-Si (Boron-Iron-Silicon) | V. Raghavan |
382 | B-Fe-Yb (Boron-Iron-Ytterbium) | V. Raghavan |
383-384 | Cr-Fe-Zn (Chromium-Iron-Zinc) | V. Raghavan |
385-386 | Dy-Fe-Sn (Dysprosium-Iron-Tin) | V. Raghavan |
387-388 | Fe-Gd-Sn (Iron-Gadolinium-Tin) | V. Raghavan |
389-390 | Fe-Nb-Ni (Iron-Niobium-Nickel) | V. Raghavan |
391-392 | Fe-Nb-Ti (Iron-Niobium-Titanium) | V. Raghavan |
393 | Fe-Ni-Pd (Iron-Nickel-Palladium) | V. Raghavan |
394 | Fe-Ni-Zn (Iron-Nickel-Zinc) | V. Raghavan |
395-396 | Fe-Si-Zn (Iron-Silicon-Zinc) | V. Raghavan |
397-398 | Fe-Sn-Y (Iron-Tin-Yttrium) | V. Raghavan |
399 | Fe-Sn-Zn (Iron-Tin-Zinc) | V. Raghavan |
400 | Al-Cr-Fe-Zn (Aluminum-Chromium-Iron-Zinc) | V. Raghavan |
401 | Co-Fe-Ho-Sm (Cobalt-Iron-Holmium-Samarium) | V. Raghavan |
402 | Supplemental Literature Review | H. Okamoto |
403 | Ag-Sb (Silver-Antimony) | H. Okamoto |
404 | Ca-Si (Calcium-Silicon) | H. Okamoto |
405 | Mg-Nd | H. Okamoto |
406-407 | Mn-Ni (Manganese-Nickel) | H. Okamoto |
408 | Ni-O (Nickel-Oxygen) | H. Okamoto |
409 | Ni-Zr (Nickel-Zirconium) | H. Okamoto |
410 | Os-Si (Osmium-Silicon) | H. Okamoto |
411 | Editorial | Reza Abbaschian |
412-416 | Synthesis and Characterization of New Bismuth Lead Vanadate Pb2BiV3O11 | M. Kurzawa, M. Bosacka and I. Szkoda |
417-421 | Experimental Phase Diagram Investigations in the Ni-Rich Part of Al-Fe-Ni and Comparison with Calculated Phase Equilibria | Igor Chumak, Klaus W. Richter, Suzana G. Fries and Herbert Ipser |
422-426 | Stress-Induced Changes to the Triple-Point Phase Boundary of the Niobium-Deuterium System | Joseph Bulak, Gilberto Jimenez, Naima Millette, Karim Rebeiz and Andrew Craft |
427-432 | Molecular Diffusion Coefficients of Organic Compounds in Water at Different Temperatures | J.M.P.Q. Delgado |
433-438 | Pb-Free Solders: Part III. Wettability Testing of Sn-Ag-Cu-Bi Alloys with Sb Additions | Z. Moser, W. Gasior, K. Bukat, J. Pstruś and R. Kisiel, et al. |
439 | Ternary Aluminum Phase Diagram Updates | V. Raghavan |
440-441 | Al-B-Dy (Aluminum-Boron-Dysprosium) | V. Raghavan |
442-443 | Al-B-Er (Aluminum-Boron-Erbium) | V. Raghavan |
444-445 | Al-B-Gd (Aluminum-Boron-Gadolinium) | V. Raghavan |
446-447 | Al-B-Ho (Aluminum-Boron-Holmium) | V. Raghavan |
448-449 | Al-B-Tb (Aluminum-Boron-Terbium) | V. Raghavan |
450-452 | Al-Ca-Mg (Aluminum-Calcium-Magnesium) | V. Raghavan |
453-455 | Al-Ce-Mg (Aluminum-Cerium-Magnesium) | V. Raghavan |
456-458 | Al-Ce-Si (Aluminum-Cerium-Silicon) | V. Raghavan |
459-460 | Al-Dy-Mg (Aluminum-Dysprosium-Magnesium) | V. Raghavan |
461-463 | Al-Er-Mg (Aluminum-Erbium-Magnesium) | V. Raghavan |
464-468 | Al-Gd-Mg (Aluminum-Gadolinium-Magnesium) | V. Raghavan |
469-470 | Al-Ho-Mg (Aluminum-Holmium-Magnesium) | V. Raghavan |
471-472 | Al-Mg-Sc (Aluminum-Magnesium-Scandium) | V. Raghavan |
473-476 | Al-Mg-Sr (Aluminum-Magnesium-Strontium) | V. Raghavan |
477-479 | Al-Mg-Y (Aluminum-Magnesium-Yttrium) | V. Raghavan |
480-484 | The Ga-Ni-Si (Gallium-Nickel-Silicon) System | K. P. Gupta |
485 | Al-Rh (Aluminum-Rhodium) | H. Okamoto |
486 | Au-Er (Gold-Erbium) | H. Okamoto |
487-488 | Au-Nd (Gold-Neodymium) | H. Okamoto |
489 | Au-Pr (Gold-Praseodymium) | H. Okamoto |
490 | Au-Sn (Gold-Tin) | H. Okamoto |
491 | Au-Tm (Gold-Thulium) | H. Okamoto |
492-493 | Dy-Zn (Dysprosium-Zinc) | H. Okamoto |
494 | Ga-Pt (Gallium-Platinum) | H. Okamoto |
495 | Ir-Si (Iridium-Silicon) | H. Okamoto |
496 | Ir-Zr (Iridium-Zirconium) | H. Okamoto |
497 | O-U (Oxygen-Uranium) | H. Okamoto |
498 | O-Zr (Oxygen-Zirconium) | H. Okamoto |
499-500 | U-Zr (Uranium-Zirconium) | H. Okamoto |
1 | Editorial | Andrew Watson |
2-10 | Computational Study of Atomic Mobility for fcc Phase of Co-Fe and Co-Ni Binaries | Y.-W. Cui, M. Jiang, I. Ohnuma, K. Oikawa and R. Kainuma, et al. |
11-19 | Ternary Phase Equilibria at 450 °C in the Zn-Fe-P System | Zhi Li, Xuping Su and Yuehui He |
20-29 | Thermodynamic Study of Liquid, Crystalline and Quasi-Crystalline Al-Mn Phases | A.I. Zaitsev, N.E. Zaitseva, N.A. Arutyunyan and B.M. Mogutnov |
30-33 | Phase Diagram of Ternary Magnesium Acetate-Acetic Acid-Water System at 298.1 and 333.1 K | Hong-Kun Zhao, Dao-Sen Zhang, Rong-Rong Li, Qiu-Hong Zhang and Cao Tang |
34-39 | Solid-Liquid Equilibrium for Quaternary System Na2SO4-NaCl-H2O2-H2O at 283.15 K | Hong-Kun Zhao, Rong-Rong Li, Dao-Sen Zhang, Qiu-Hong Zhang and Cao Tang |
40 | Phase Diagram Evaluations |
41 | Ternary and High Order Aluminum Phase Diagram Updates | V. Raghavan |
42 | Al-B-Ir (Aluminum-Boron-Iridium) | V. Raghavan |
43 | Al-B-Rh (Aluminum-Boron-Rhodium) | V. Raghavan |
44-45 | Al-B-Si (Aluminum-Boron-Silicon) | V. Raghavan |
46-48 | Al-C-Co (Aluminum-Carbon-Cobalt) | V. Raghavan |
49-50 | Al-C-Cr (Aluminum-Carbon-Chromium) | V. Raghavan |
51 | Al-C-Ir (Aluminum-Carbon-Iridium) | V. Raghavan |
52 | Al-C-Rh (Aluminum-Carbon-Rhodium) | V. Raghavan |
53 | Al-Co-Gd (Aluminum-Cobalt-Gadolinium) | V. Raghavan |
54-56 | Al-Co-Pd (Aluminum-Cobalt-Palladium) | V. Raghavan |
57-59 | Al-Co-Si (Aluminum-Cobalt-Silicon) | V. Raghavan |
60 | Al-Cu-Rh (Aluminum-Copper-Rhodium) | V. Raghavan |
61 | Al-Ir-Ni (Aluminum-Iridium-Nickel) | V. Raghavan |
62 | Al-Ir-Pt (Aluminum-Iridium-Platinum) | V. Raghavan |
63-67 | Al-Mn-Pd (Aluminum-Manganese-Palladium) | V. Raghavan |
68 | Al-Pd-Re (Aluminum-Palladium-Rhenium) | V. Raghavan |
69-70 | Al-Pd-Rh (Aluminum-Palladium-Rhodium) | V. Raghavan |
71 | Al-C-Co-Fe (Aluminum-Carbon-Cobalt-Iron) | V. Raghavan |
72 | Al-C-Co-Ni (Aluminum-Carbon-Cobalt-Nickel) | V. Raghavan |
73-83 | C-K (Carbon-Potassium) System | James Sangster |
84-92 | C-Rb (Carbon-Rubidium) System | James Sangster |
93-100 | C-Cs (Carbon-Cesium) System | James Sangster |
101-109 | The Ga-Mn-Ni (Gallium-Manganese-Nickel) System | K. P. Gupta |
110 | Supplemental Literature Review |
111 | Ag-Ga (Silver-Gallium) | H. Okamoto |
112-113 | Al-Cr (Aluminum-Chromium) | H. Okamoto |
114 | Al-Y (Aluminum-Yttrium) | H. Okamoto |
115 | Be-Zr (Beryllium-Zirconium) | H. Okamoto |
116-117 | Ce-Fe (Cerium-Iron) | H. Okamoto |
118 | Ce-Y (Cerium-Yttrium) | H. Okamoto |
119 | Co-W (Cobalt-Tungsten) | H. Okamoto |
120 | Gd-Y (Gadolinium-Yttrium) | H. Okamoto |
121 | Hg-Tl (Mercury-Thallium) | H. Okamoto |
122 | La-Pt (Lanthanum-Platinum) | H. Okamoto |
123 | La-Y (Lanthanum-Yttrium) | H. Okamoto |
124 | Hf-O (Hafnium-Oxygen) | H. Okamoto |
125 | Nd-Y (Neodymium-Yttrium) | H. Okamoto |
126 | Pr-Y (Praseodymium-Yttrium) | H. Okamoto |
127 | Sr-Zn (Strontium-Zinc) | H. Okamoto |
129-130 | Editorial | J.-C. Zhao |
131-135 | Homogenization of Highly Alloyed Cu-Fe-Ni: A Phase Diagram Study | Isabella Gallino, Stefano Curiotto, Marcello Baricco, Michael E. Kassner and Ralf Busch |
136-140 | Phase Diagram for the System RuO2-TiO2 in Air | K.T. Jacob and R. Subramanian |
141-155 | Experimental and Thermodynamic Assessment of the Nb-Ni-Y System | N. Mattern, M. Zinkevich, W. Löser, G. Behr and J. Acker |
156-162 | Details on the Formation of Ti2Cu3 in the Ag-Cu-Ti System in the Temperature Range 790 to 860 °C | J. Andrieux, O. Dezellus, F. Bosselet, M. Sacerdote-Peronnet and C. Sigala, et al. |
163 | Phase Diagram Evaluations |
164 | Ternary and High Order Aluminum Phase Diagram Updates | V. Raghavan |
165 | Al-Bi-Pb (Aluminum-Bismuth-Lead) | V. Raghavan |
166 | Al-Bi-Sn (Aluminum-Bismuth-Tin) | V. Raghavan |
167-168 | Al-Bi-Zn (Aluminum-Bismuth-Zinc) | V. Raghavan |
169-170 | Al-Cr-Cu (Aluminum-Chromium-Copper) | V. Raghavan |
171-172 | Al-Cr-Mn (Aluminum-Chromium-Manganese) | V. Raghavan |
173-174 | Al-Cr-Nb (Aluminum-Chromium-Niobium) | V. Raghavan |
175 | Al-Cr-Ni (Aluminum-Chromium-Nickel) | V. Raghavan |
176-178 | Al-Cr-Si (Aluminum-Chromium-Silicon) | V. Raghavan |
179 | Al-Cu-In (Aluminum-Copper-Indium) | V. Raghavan |
180-184 | Al-Fe-Ni (Aluminum-Iron-Nickel) | V. Raghavan |
185 | Al-Mg-Sc (Aluminum-Magnesium-Scandium) | V. Raghavan |
186-187 | Al-Nd-Ti (Aluminum-Neodymium-Titanium) | V. Raghavan |
188-189 | Al-Pb-Zn (Aluminum-Lead-Zinc) | V. Raghavan |
190-191 | Al-Sb-Y (Aluminum-Antimony-Yttrium) | V. Raghavan |
192-193 | Al-Mg-Sc-Zr (Aluminum-Magnesium-Scandium-Zirconium) | V. Raghavan |
194-197 | The Nb-Ni-Ti (Niobium-Nickel-Titanium) System—Update | K.P. Gupta |
198 | Supplemental Literature Review |
199 | Al-Pd (Aluminum-Palladium) | H. Okamoto |
200 | Al-Sm (Aluminum-Samarium) | H. Okamoto |
201 | B-Nb (Boron-Niobium) | H. Okamoto |
202 | Be-Ti (Beryllium-Titanium) | H. Okamoto |
203 | Bi-Ni (Bismuth-Nickel) | H. Okamoto |
204 | Cu-Zr (Copper-Zirconium) | H. Okamoto |
205 | Dy-Ga (Dysprosium-Gallium) | H. Okamoto |
206 | F-Li (Fluorine-Lithium) | H. Okamoto |
207 | I-Li (Iodine-Lithium) | H. Okamoto |
208-209 | Mg-Mn (Magnesium-Manganese) | H. Okamoto |
210 | Nb-Ni (Niobium–Nickel) | H. Okamoto |
211-212 | Ti-Zn (Titanium-Zinc) | H. Okamoto |
299 | Editorial | Roberto R. de Avillez |
300-304 | Isothermal Sections in the (Fe, Ni)-Rich Part of the Fe-Ni-Al Phase Diagram | Igor Chumak, Klaus W. Richter and Herbert Ipser |
305-311 | A Constitutive Equation for Magnetorheological Fluid Characterization | Constantin Ciocanel, Glenn Lipscomb and Nagi G. Naganathan |
312-321 | Computational Study of Atomic Mobility in Co-Fe-Ni Ternary Fcc Alloys | Y. W. Cui, M. Jiang, I. Ohnuma, K. Oikawa and R. Kainuma, et al. |
322-332 | A New Hard Sphere Cubic Equation of State for Predicting Fluids’ Properties and Vapor-Liquid Phase Equilibrium Calculations | S. Hajipour and M. Edalat |
333-336 | Equilibrium Phase Diagram of the Ternary 2-Nitrobenzoic acid-3-Nitrobenzoic Acid-Acetone System at 283.15 K and 313.15 K | Hong-Kun Zhao, Qiu-Hong Zhang, Rong-Rong Li, Dao-Sen Zhang and Qi-Shu Qu |
337-344 | Control of Silicon Reactivity in General Galvanizing | Nai-Yong Tang |
345 | Phase Diagram Evaluations |
346 | Ternary and High Order Aluminum Phase Diagram Updates |
347-348 | Ag-Al-Ce (Silver-Aluminum-Cerium) | V. Raghavan |
349-350 | Ag-Al-Dy (Silver-Aluminum-Dysprosium) | V. Raghavan |
351-352 | Ag-Al-Gd (Silver-Aluminum-Gadolinium) | V. Raghavan |
353-354 | Ag-Al-La (Silver-Aluminum-Lanthanum) | V. Raghavan |
355-356 | Ag-Al-Nd (Silver-Aluminum-Neodymium) | V. Raghavan |
357-358 | Ag-Al-Pr (Silver-Aluminum-Praseodymium) | V. Raghavan |
359-360 | Ag-Al-Sm (Silver-Aluminum-Samarium) | V. Raghavan |
361-362 | Ag-Al-Tb (Silver-Aluminum-Terbium) | V. Raghavan |
363-364 | Ag-Al-Y (Silver-Aluminum-Yttrium) | V. Raghavan |
365-366 | Al-C-Si (Aluminum-Carbon-Silicon) | V. Raghavan |
367 | Al-C-Y (Aluminum-Carbon-Yttrium) | V. Raghavan |
368 | Al-Hf-Ir (Aluminum-Hafnium-Iridium) | V. Raghavan |
369 | Al-Ir-Nb (Aluminum-Iridium-Niobium) | V. Raghavan |
370 | Al-Ir-Ta (Aluminum-Iridium-Tantalum) | V. Raghavan |
371 | Al-Ir-Ti (Aluminum-Iridium-Titanium) | V. Raghavan |
372 | Al-Ir-V (Aluminum-Iridium-Vanadium) | V. Raghavan |
373 | Al-Ir-Zr (Aluminum-Iridium-Zirconium) | V. Raghavan |
374-377 | The Ga-Ni-Sn (Gallium-Nickel-Tin) System | K.P. Gupta |
378 | Supplemental Literature Review | H. Okamoto |
379 | B-Ca (Boron-Calcium) | H. Okamoto |
380 | Ba-Ti (Barium-Titanium) | H. Okamoto |
381-382 | Ce-Mn (Cerium-Manganese) | H. Okamoto |
383-384 | Co-Fe (Cobalt-Iron) | H. Okamoto |
385 | Pt-Zr (Platinum-Zirconium) | H. Okamoto |
386 | Pr-Yb (Praseodymium-Ytterbium) | H. Okamoto |
387-388 | Ru-Sc (Ruthenium-Scandium) | H. Okamoto |
389 | Editorial | John Morral |
390-397 | Calculation of Two-Dimensional Sections of Liquidus Projections in Multicomponent Systems | Shuanglin Chen, Ying Yang, Weisheng Cao, Bernard P. Bewlay and Kuo-Chih Chou, et al. |
398-404 | Thermodynamic Optimization and Calculation of the HoCl3-MCl (M = Na, K, Rb, Cs) Systems | Juan Hu, Yimin Sun, Tianyi Gao, Xiangzhen Meng and Yongxiang Yao, et al. |
405-413 | Study of Diffusion and Marker Movement in fcc Ag-Au Alloys | Yajun Liu, Lijun Zhang, Di Yu and Yang Ge |
414-428 | On the Quaternary System Ti-Fe-Ni-Al | Xinlin Yan, A. Grytsiv, P. Rogl, V. Pomjakushin and H. Schmidt |
429 | Phase Diagram Evaluations |
430 | Ternary and Higher Order Iron Phase Diagram Updates | V. Raghavan |
431-433 | Al-Fe-Zn (Aluminum-Iron-Zinc) | V. Raghavan |
434-435 | B-Fe-U (Boron-Iron-Uranium) | V. Raghavan |
436-437 | Ce-Fe-Si (Cerium-Iron-Silicon) | V. Raghavan |
438-439 | Co-Fe-Ga (Cobalt-Iron-Gallium) | V. Raghavan |
440-441 | Co-Fe-Sb (Cobalt-Iron-Antimony) | V. Raghavan |
442-443 | Cr-Fe-Zn (Chromium-Iron-Zinc) | V. Raghavan |
444 | Cu-Fe-Zn (Copper-Iron-Zinc) | V. Raghavan |
445-446 | Er-Fe-Sb (Erbium-Iron-Antimony) | V. Raghavan |
447 | Fe-Ho-Sb (Iron-Holmium-Antimony) | V. Raghavan |
448-449 | Fe-Nd-Sb (Iron-Neodymium-Antimony) | V. Raghavan |
450 | Fe-P-Zn (Iron-Phosphorus-Zinc) | V. Raghavan |
451 | Fe-Pb-Sb (Iron-Lead-Antimony) | V. Raghavan |
452-453 | Fe-Pr-Sb (Iron-Praseodymium-Antimony) | V. Raghavan |
454-456 | Fe-Rh-Ti (Iron-Rhodium-Titanium) | V. Raghavan |
457 | Fe-S-Zn (Iron-Sulfur-Zinc) | V. Raghavan |
458 | Fe-Ti-Zn (Iron-Titanium-Zinc) | V. Raghavan |
459-460 | As-C-Fe-Pb (Arsenic-Carbon-Iron-Lead) | V. Raghavan |
461-462 | C-Fe-Pb-Sb (Carbon-Iron-Lead-Antimony) | V. Raghavan |
463 | Supplemental Literature Review | H. Okamoto |
464 | Ba-Si (Barium-Silicon) | H. Okamoto |
465 | Be-Sc (Beryllium-Scandium) | H. Okamoto |
466-467 | Ga-Pd (Gallium-Palladium) | H. Okamoto |
468-469 | Ga-U (Gallium-Uranium) | H. Okamoto |
470 | Lu-S (Lutetium-Sulfur) | H. Okamoto |
471 | Pt-Ru (Platinum-Ruthenium) | H. Okamoto |
472 | S-Si (Sulfur-Silicon) | H. Okamoto |
473 | Sb-Yb (Antimony-Ytterbium) | H. Okamoto |
475-476 | Integrating Methods for Phase Equilibria and Phase Property Data Determination | Ursula R. Kattner |
477-481 | Microstructural Evidence of βCo2Si-phase Stability in the Co-Si System | Renato Baldan, Maria Ismênia Sodero Toledo Faria, Carlos Angelo Nunes, Gilberto Carvalho Coelho and Vanessa Motta Chad, et al. |
482-487 | Phase Relations in the System TiO2-V2Ox under Oxidizing and Reducing Conditions | D. Habel, O. Goerke, M. Tovar, E. Kondratenko and H. Schubert |
488-492 | Experimental Determination and Atomistic Simulation on the Structure of FeZn13 | Y. Liu, X.P. Su, F.C. Yin, Z. Li and Y.H. Liu |
493-499 | The 450 °C Isothermal Section of the Zn-Bi-Ni System | Yongxiong Liu, Fucheng Yin, Hao Tu, Zhi Li and Jianhua Wang, et al. |
500-508 | The Heusler Phase Ti25(Fe50 − xNix)Al25 (0 ≤ x ≤ 50); Structure and Constitution | Xinlin Yan, A. Grytsiv, P. Rogl, V. Pomjakushin and M. Palm |
509-512 | Thermodynamics of Solvent Extraction of Indium with P507 | Zhenwei Wang, Caibin Zhou, Dawei Fang, Shuliang Zang and Yun Dai |
513 | Phase Diagram Evaluations |
514 | Ternary and Higher Order Iron Phase Diagram Updates | V. Raghavan |
515 | Al-Co-Fe (Aluminum-Cobalt-Iron) | V. Raghavan |
516 | Al-Fe-Ga (Aluminum-Iron-Gallium) | V. Raghavan |
517 | B-Cu-Fe (Boron-Copper-Iron) | V. Raghavan |
518-519 | Co-Cu-Fe (Cobalt-Copper-Iron) | V. Raghavan |
520-522 | Cu-Fe-Mn (Copper-Iron-Manganese) | V. Raghavan |
523 | Dy-Fe-Pt (Dysprosium-Iron-Platinum) | V. Raghavan |
524 | Er-Fe-Ti (Erbium-Iron-Titanium) | V. Raghavan |
525 | Er-Fe-V (Erbium-Iron-Vanadium) | V. Raghavan |
526 | Fe-Nd-Pt (Iron-Neodymium-Platinum) | V. Raghavan |
527-528 | Fe-Ni-Si (Iron-Nickel-Silicon) | V. Raghavan |
529-531 | Fe-P-Ti (Iron-Phosphorus-Titanium) | V. Raghavan |
532 | Fe-Pr-Pt (Iron-Praseodymium-Platinum) | V. Raghavan |
533-534 | As-C-Cu-Fe (Arsenic-Carbon-Copper-Iron) | V. Raghavan |
535 | B-C-Cu-Fe (Boron-Carbon-Copper-Iron) | V. Raghavan |
536-537 | C-Cu-Fe-Sb (Carbon-Copper-Iron-Antimony) | V. Raghavan |
538 | Supplemental Literature Review | H. Okamoto |
539 | B-Nb (Boron-Niobium) | H. Okamoto |
540 | B-S (Boron-Sulfur) | H. Okamoto |
541 | B-Te (Boron-Tellurium) | H. Okamoto |
542 | Ba-Nd (Barium-Neodymium) | H. Okamoto |
543-544 | C-W (Carbon-Tungsten) | H. Okamoto |
545-547 | Ce-O (Cerium-Oxygen) | H. Okamoto |
548-549 | Co-O (Cobalt-Oxygen) | H. Okamoto |
550-551 | Ga-O (Gallium-Oxygen) | H. Okamoto |
305 | Editorial | Bruce Harmon |
306-308 | Comments Concerning “Equilibrium Phase Diagram of the Ternary 2-Nitrobenzoic Acid + 3-Nitrobenzoic Acid + Acetone System at 283.15 and 313.15 K” | William E. Acree |
309-317 | Phase Characteristics of a U-22Pu-4Am-2Np-40Zr Metallic Alloy Containing Rare Earths | Douglas E. Burkes, J. Rory Kennedy, Thomas Hartmann and Leah N. Squires |
318-322 | First-Principle Calculation Assisted Thermodynamic Assessment of the Pt-Pb System | Z. H. Long, X. M. Tao, H. S. Liu and Z. P. Jin |
323-333 | Assessment and Evaluation of Mobilities for Diffusion in the bcc Cr-V-Fe System | Greta Lindwall and Karin Frisk |
334-344 | Computational Study of Mobilities and Diffusivities in bcc Ti-Zr and bcc Ti-Mo Alloys | Yajun Liu, Lijun Zhang and Di Yu |
345-350 | Isothermal Section of the V-Si-B System at 1600 °C in the V-VSi2-VB Region | Carlos Angelo Nunes, Belmira Benedita de Lima, Gilberto Carvalho Coelho and Paulo Atsushi Suzuki |
351-366 | Thermodynamic Assessment of the La-Fe-O System | E. Povoden-Karadeniz, A. N. Grundy, M. Chen, T. Ivas and L. J. Gauckler |
367 | Phase Diagram Evaluations |
368 | Ternary Iron Phase Diagram Updates | V. Raghavan |
369-371 | Al-C-Fe (Aluminum-Carbon-Iron) | V. Raghavan |
372-374 | Al-Fe-Mo (Aluminum-Iron-Molybdenum) | V. Raghavan |
375-377 | Al-Fe-Ni (Aluminum-Iron-Nickel) | V. Raghavan |
378 | C-Co-Fe (Carbon-Cobalt-Iron) | V. Raghavan |
379-380 | Co-Fe-Gd (Cobalt-Iron-Gadolinium) | V. Raghavan |
381-383 | Cu-Fe-Mn (Copper-Iron-Manganese) | V. Raghavan |
384-385 | Cu-Fe-Sn (Copper-Iron-Tin) | V. Raghavan |
386-387 | Cu-Fe-Zn (Copper-Iron-Zinc) | V. Raghavan |
388-389 | Dy-Fe-Ge (Dysprosium-Iron-Germanium) | V. Raghavan |
390 | Dy-Fe-Sb (Dysprosium-Iron-Antimony) | V. Raghavan |
391-392 | Fe-Gd-Ge (Iron-Gadolinium-Germanium) | V. Raghavan |
393-396 | Fe-Si-Ti (Iron-Silicon-Titanium) | V. Raghavan |
397 | Fe-Ti-Y (Iron-Titanium-Yttrium) | V. Raghavan |
398-401 | The Ge-In-Ni (Germanium-Indium-Nickel) System | K. P. Gupta |
402-405 | The Ni-Ti-Y (Nickel-Titanium-Yttrium) System | K. P. Gupta |
406 | Supplemental Literature Review | H. Okamoto |
407 | Ce-Ni (Cerium-Nickel) | H. Okamoto |
408 | Co-La (Cobalt-Lanthanum) | H. Okamoto |
409 | Ge-V (Germanium-Vanadium) | H. Okamoto |
410 | Hg-Sc (Mercury-Scandium) | H. Okamoto |
411 | Nb-U (Niobium-Uranium) | H. Okamoto |
412 | Ni-Ru (Nickel-Ruthenium) | H. Okamoto |
413-414 | Pd-Zr (Palladium-Zirconium) | H. Okamoto |
415 | U-W (Uranium-Tungsten) | H. Okamoto |
417 | Editorial | J.-C. Zhao, Yong Du and Qing Chen |
418-428 | Computational Materials Design | Larry Kaufman |
429-434 | Solidification Simulation Using Scheil Model in Multicomponent Systems | Shuang-Lin Chen, Ying Yang, Sinn-Wen Chen, Xiong-Gang Lu and Y. Austin Chang |
435-442 | Isothermal Section of the Co-Gd-Sn Ternary System Between 0 and 55 at.% Sn at 500 °C | J. L. Yan, Y. Xu, Q. X. Long, J. M. Zhu and Y. H. Zhuang |
443-461 | Thermodynamic Database for the Al-Ca-Co-Cr-Fe-Mg-Mn-Ni-Si-O-P-S System and Applications in Ferrous Process Metallurgy | Sergei A. Decterov, Youn-Bae Kang and In-Ho Jung |
462-479 | A Thermodynamic Description of the Al-Cr-Si System | Yu Liang, Cuiping Guo, Changrong Li and Zhenmin Du |
480-486 | Thermodynamic Assessment of the Cu-B System Supported by Key Experiment and First-Principles Calculations | Wei-Wei Zhang, Yong Du, Honghui Xu, Wei Xiong and Yi Kong, et al. |
487-501 | Thermodynamic Description of the Al-Mo and Al-Fe-Mo Systems | Zhenmin Du, Cuiping Guo, Changrong Li and Weijing Zhang |
502-508 | Phase Diagram and Thermodynamic and Transport Properties of the DyBr3-LiBr Binary System | B. Kubikova, L. Rycerz, I. Chojnacka and Marcelle Gaune-Escard |
509-516 | A Semi-Empirical Atomistic Approach in Materials Research | Byeong-Joo Lee |
517-534 | First-Principles Calculations and CALPHAD Modeling of Thermodynamics | Zi-Kui Liu |
535-552 | Thermodynamic Database and the Phase Diagrams of the (U, Th, Pu)-X Binary Systems | C. P. Wang, Z. S. Li, W. Fang and X. J. Liu |
553-558 | Theoretical Investigation of Lattice Thermal Vibration Effects on Phase Equilibria Within Cluster Variation Method | Tetsuo Mohri, Tomohiko Morita, Naoya Kiyokane and Hiroaki Ishii |
559-563 | Enthalpy of Formation in the Al-Ni-Ti System | Rongxiang Hu, Philip Nash and Qing Chen |
564-570 | Thermodynamic Assessment of the Si-Ta and Si-W Systems | Zhongnan Guo, Wenxia Yuan, Yu Sun, Zhoufei Cai and Zhiyu Qiao |
571-576 | Integrating CALPHAD into Phase Field Simulations for Practical Applications | Kaisheng Wu, Shuanglin Chen, Fan Zhang and Y. A. Chang |
577 | Lunar Soils: Phase Equilibria and Transport Properties | Ramana G. Reddy |
578-586 | Thermodynamic Assessment of Cr-Rare Earth Systems | Wren Chan, Michael C. Gao, Ömer N. Doğan, Paul King and Anthony D. Rollett |
587-594 | Phase Equilibria and Ternary Intermetallic Compound with L12 Structure in Co-W-Ga System | Hibiki Chinen, Toshihiro Omori, Katsunari Oikawa, Ikuo Ohnuma and Ryosuke Kainuma, et al. |
595-601 | Experimental Investigation of the Zn-Al-Sb System at 450 °C | Zhongxi Zhu, Xuping Su, Fucheng Yin, Jianhua Wang and Changjun Wu |
602-607 | Experimental and Simulation Study of Uphill Diffusion of Al in a Pt-Coated γ-Ni-Al Model Alloy | Bo Sundman, Stewart Ford, Xiao-Gang Lu, Toshio Narita and Daniel Monceau |
608 | Phase Diagram Evaluations |
609 | Ternary and Higher Order Aluminum Phase Diagram Updates | V. Raghavan |
610-613 | Al-B-Ti (Aluminum-Boron-Titanium) | V. Raghavan |
614-616 | Al-Bi-Cu (Aluminum-Bismuth-Copper) | V. Raghavan |
617-619 | Al-Ca-Sr (Aluminum-Calcium-Strontium) | V. Raghavan |
620-623 | Al-Cr-Mn (Aluminum-Chromium-Manganese) | V. Raghavan |
624-625 | Al-Li-Zr (Aluminum-Lithium-Zirconium) | V. Raghavan |
626-629 | Al-Mg-Mn (Aluminum-Magnesium-Manganese) | V. Raghavan |
630 | Al-Mo-Zn (Aluminum-Molybdenum-Zinc) | V. Raghavan |
631-632 | Al-Pd-Ru (Aluminum-Palladium-Ruthenium) | V. Raghavan |
633-635 | Ca-Mg-Sr (Calcium-Magnesium-Strontium) | V. Raghavan |
636-637 | Al-Ca-Mg-Sr (Aluminum-Calcium-Magnesium-Strontium) | V. Raghavan |
638-640 | Al-Ca-Mg-Mn-Sr (Aluminum-Calcium-Magnesium-Manganese-Strontium) | V. Raghavan |
641-645 | The Co-Ni-Si (Cobalt-Nickel-Silicon) System | K. P. Gupta |
646-650 | The Co-Ni-Sn (Cobalt-Nickel-Tin) System | K. P. Gupta |
651-656 | The Cu-Ni-Y (Copper-Nickel-Yttrium) System | K. P. Gupta |
657 | Supplemental Literature Review |
658 | Ga-Se (Gallium-Selenium) | H. Okamoto |
659 | Hg-O (Mercury-Oxygen) | H. Okamoto |
660-661 | Mg-Sc (Magnesium-Scandium) | H. Okamoto |
662 | Ni-Os (Nickel-Osmium) | H. Okamoto |
663-664 | O-Pu (Oxygen-Plutonium) | H. Okamoto |
665 | Pd-T (Palladium-Tritium) | H. Okamoto |
666-667 | Pt-V (Platinum-Vanadium) | H. Okamoto |
668-669 | Sc-Sn (Scandium-Tin) | H. Okamoto |
1 | Editorial | Peter Rogl |
2-5 | Diffusion of Boron on Superplastic Duplex Stainless Steel | M. Matsushita and H. Ogiyama |
6-14 | Bending of a Bimetallic Beam Due to the Kirkendall Effect | W. J. Boettinger and G. B. McFadden |
15-21 | Structure and Inter-Diffusion Coefficients of Liquid NaxK1−x Alloys | Ş. Korkmaz and S. D. Korkmaz |
22-27 | Evaluation of Ti3Si Phase Stability from Heat-Treated, Rapidly Solidified Ti-Si Alloys | Alex Matos da Silva Costa, Gisele Ferreira de Lima, Geovani Rodrigues, Carlos Angelo Nunes and Gilberto Carvalho Coelho, et al. |
28-33 | Diffusion and Atomic Mobilities in fcc Ni-Sn Alloys | J. Wang, C. Leinenbach, H. S. Liu, L. B. Liu and M. Roth, et al. |
34-36 | Emf Measurements in the Liquid Au-Cu-Sn Lead-free Solder Alloys | A. Wierzbicka-Miernik, G. Garzel and L. A. Zabdyr |
37 | Phase Diagram Evaluations |
38 | Ternary and Higher Order Aluminum Phase Diagram Updates | V. Raghavan |
39-40 | Al-Cu-Si (Aluminum-Copper-Silicon) | V. Raghavan |
41-42 | Al-Cu-Zn (Aluminum-Copper-Zinc) | V. Raghavan |
43 | Al-Dy-Sb (Aluminum-Dysprosium-Antimony) | V. Raghavan |
44-45 | Al-Er-Si (Aluminum-Erbium-Silicon) | V. Raghavan |
46 | Al-Mg-Mn (Aluminum-Magnesium-Manganese) | V. Raghavan |
47-52 | Al-Nb-Ti (Aluminum-Niobium-Titanium) | V. Raghavan |
53-54 | Al-Ni-Re (Aluminum-Nickel-Rhenium) | V. Raghavan |
55-56 | Al-Ni-Ti (Aluminum-Nickel-Titanium) | V. Raghavan |
57-58 | Al-Ni-Y (Aluminum-Nickel-Yttrium) | V. Raghavan |
59 | Al-Pt-Ti (Aluminum-Platinum-Titanium) | V. Raghavan |
60 | Al-Sb-Y (Aluminum-Antimony-Yttrium) | V. Raghavan |
61 | Al-Ca-Mg-Mn (Aluminum-Calcium-Magnesium-Manganese) | V. Raghavan |
62-67 | Na-P (Sodium-Phosphorus) System | James M. Sangster |
68-72 | K-P (Potassium-Phosphorus) System | James M. Sangster |
73-76 | P-Rb (Phosphorus-Rubidium) System | James M. Sangster |
77-80 | Cs-P (Cesium-Phosphorus) System | James M. Sangster |
81 | Supplemental Literature Review |
82 | Bi-Cl (Bismuth-Chlorine) | H. Okamoto |
83-84 | Cu-V (Copper-Vanadium) | H. Okamoto |
85 | Co-Sc (Cobalt-Scandium) | H. Okamoto |
86-87 | Cs-O (Cesium-Oxygen) | H. Okamoto |
88-90 | Ca-Fe (Calcium-Iron) | H. Okamoto |
91-92 | C-V (Carbon-Vanadium) | H. Okamoto |
93 | Hg-Tm (Mercury-Thulium) | H. Okamoto |
94-95 | Co-Nb (Cobalt-Niobium) | H. Okamoto |
97 | Editorial | J. F. (Jack) Smith |
98-103 | Cu9Ni6Sn: Determination of Phase Transformation at High Temperature | A. Deraisme, C. Servant, D. Pachoutinsky, Y. Bienvenu and J.-D. Bartout, et al. |
104-112 | Cascade of Peritectic Reactions in the B-Fe-U System | M. Dias, P. A. Carvalho, A. P. Dias, M. Bohn and N. Franco, et al. |
113-134 | Thermodynamic Assessment of the Fe-Mn-O System | Lina Kjellqvist and Malin Selleby |
135-143 | Assessment of Atomic Mobilities for bcc Phase of Ti-Al-V System | Lei Huang, Yuwen Cui, Hui Chang, Hong Zhong and Jinshan Li, et al. |
144-148 | Predicting the Q-Phase in Al-Cu-Mg-Si Alloys | X. Pan, J. E. Morral and H. D. Brody |
149-156 | Interdiffusion of Bi in Liquid Sn | C. B. Porth and J. R. Cahoon |
157-163 | Phase Equilibria and Crystal Chemistry in the System CaO-Al2O3-Y2O3 | Andreas Richter and Matthias Göbbels |
164 | Phase Diagram Evaluations |
165 | Ternary Iron Phase Diagram Updates | V. Raghavan |
166-167 | Al-Fe-Nb (Aluminum-Iron-Niobium) | V. Raghavan |
168 | Cr-Dy-Fe (Chromium-Dysprosium-Iron) | V. Raghavan |
169-171 | Cu-Fe-Si (Copper-Iron-Silicon) | V. Raghavan |
172 | Er-Fe-Mn (Erbium-Iron-Manganese) | V. Raghavan |
173-174 | Fe-Ga-Gd (Iron-Gallium-Gadolinium) | V. Raghavan |
175-176 | Fe-Ga-Tb (Iron-Gallium-Terbium) | V. Raghavan |
177-179 | Fe-Mn-Ni (Iron-Manganese-Nickel) | V. Raghavan |
180-183 | Fe-Nb-Ni (Iron-Niobium-Nickel) | V. Raghavan |
184-185 | Fe-Ni-Si (Iron-Nickel-Silicon) | V. Raghavan |
186-189 | Fe-Ni-Ti (Iron-Nickel-Titanium) | V. Raghavan |
190 | Fe-Sn-W (Iron-Tin-Tungsten) | V. Raghavan |
191-193 | The Cr-Ni-Zr (Chromium-Nickel-Zirconium) System | K. P. Gupta |
194-197 | The Ni-Re-Zr (Nickel-Rhenium-Zirconium) System | K. P. Gupta |
198 | Supplemental Literature Review |
199 | Mg-Y (Magnesium-Yttrium) | H. Okamoto |
200-201 | Ni-P (Nickel-Phosphorus) | H. Okamoto |
202-203 | Sn-Ti (Tin-Titanium) | H. Okamoto |
204 | Bi-Rh (Bismuth-Rhodium) | H. Okamoto |
205 | Bi-Sn (Bismuth-Tin) | H. Okamoto |
206 | Ga-Na (Gallium-Sodium) | H. Okamoto |
207 | As-Te (Arsenic-Tellurium) | H. Okamoto |
208-209 | B-Nb (Boron-Niobium) | H. Okamoto |
211 | Editorial | Mark E. Schlesinger |
212-215 | Simulation of Carbon Diffusion in Steel Driven by a Temperature Gradient | Lars Höglund and John Ågren |
216-222 | Microstructural Characterization of U-Nb-Zr, U-Mo-Nb, and U-Mo-Ti Alloys via Electron Microscopy | A. Ewh, E. Perez, D. D. Keiser and Y. H. Sohn |
223-232 | Determination of the Diffusivity of Point Defects in Passive Films on NiTi and NiTiAl Alloys | Kuan-Ting Liu and Jenq-Gong Duh |
233-237 | Thermodynamics of Solvent Extraction of Rhenium(VII) with N1923 | Da-wei Fang, Xue-jun Gu, Ying Xiong, Shuang Yue and Shu-liang Zang |
238-249 | Thermodynamic Evaluation of the Si-C-Al-Y-O System for LPS-SiC Application | Zhu Pan, Olga Fabrichnaya, Hans J. Seifert, Roland Neher and Kristina Brandt, et al. |
250-259 | Assessing Concentration Dependence of FCC Metal Alloy Diffusion Coefficients Using Kinetic Monte Carlo | B. Swoboda, A. Van der Ven and D. Morgan |
260-269 | High Temperature Thermodynamic Data for CdTe(c) | Robert F. Brebrick |
270 | Phase Diagram Evaluations |
271 | Ternary and Higher Order Aluminum Phase Diagram Updates |
272-273 | Al-B-Mg (Aluminum-Boron-Magnesium) | V. Raghavan |
274 | Al-C-Co (Aluminum-Carbon-Cobalt) | V. Raghavan |
275-278 | Al-Ce-Cu (Aluminum-Cerium-Copper) | V. Raghavan |
279-281 | Al-Cr-Ni (Aluminum-Chromium-Nickel) | V. Raghavan |
282-284 | Al-Cu-Dy (Aluminum-Copper-Dysprosium) | V. Raghavan |
285-287 | Al-Cu-Er (Aluminum-Copper-Erbium) | V. Raghavan |
288-290 | Al-Cu-Li (Aluminum-Copper-Lithium) | V. Raghavan |
291-292 | Al-Ir-Ru (Aluminum-Iridium-Ruthenium) | V. Raghavan |
293-294 | Al-Mg-Zn (Aluminum-Magnesium-Zinc) | V. Raghavan |
295-296 | Al-Sb-Si (Aluminum-Antimony-Silicon) | V. Raghavan |
297-299 | Ag-Al-Cu-Mg (Silver-Aluminum-Copper-Magnesium) | V. Raghavan |
300-307 | The Co-Cr-Si (Cobalt-Chromium-Silicon) System | K. P. Gupta |
308-312 | The Co-Nb-Si (Cobalt-Niobium-Silicon) System | K. P. Gupta |
313 | Supplemental Literature Review |
314-315 | Bi-Ti (Bismuth-Titanium) | H. Okamoto |
316-317 | Cl-F (Chlorine-Fluorine) | H. Okamoto |
318 | Cl-O (Chlorine-Oxygen) | H. Okamoto |
319 | Dy-Ti (Dysprosium-Titanium) | H. Okamoto |
320-321 | I-Pb (Iodine-Lead) | H. Okamoto |
322 | Ni-Pt (Nickel-Platinum) | H. Okamoto |
323 | Sb-Y (Antimony-Yttrium) | H. Okamoto |
324 | V-W (Vanadium-Tungsten) | H. Okamoto |
325-326 | Editorial | V. Raghavan |
327-332 | Investigation of the Phase Relations in the Al-Rich Alloys of the Al-Sc-Hf System in Solid State | L. L. Rokhlin, N. R. Bochvar, J. Boselli and T. V. Dobatkina |
333-340 | A New Equation for Temperature Dependent Solute Impurity Diffusivity in Liquid Metals | Xuping Su, Sui Yang, Jianhua Wang, Nai-Yong Tang and Fucheng Yin, et al. |
341-347 | Reuse of RO Desalination Plant Reject Brine | Ferid Hajbi, Halim Hammi and Adel M’nif |
348-356 | To Journal of Phase Equilibria and Diffusion Phase Relationship of the BaO-ZrO2-YO1.5 System at 1500 and 1600 °C | Susumu Imashuku, Tetsuya Uda, Yoshitaro Nose and Yasuhiro Awakura |
357-364 | Thermodynamic Assessment of the Mn-B System | Weihua Sun, Yong Du, Shuhong Liu, Baiyun Huang and Chao Jiang |
365 | Phase Diagram Evaluations |
366 | Ternary and Higher Order Iron Phase Diagram Updates | V. Raghavan |
367 | Al-Fe-O (Aluminum-Iron-Oxygen) | V. Raghavan |
368 | Fe-Mg-O (Iron-Magnesium-Oxygen) | V. Raghavan |
369-371 | Fe-Ni-O (Iron-Nickel-Oxygen) | V. Raghavan |
372 | Fe-O-Sn (Iron-Oxygen-Tin) | V. Raghavan |
373-376 | Fe-O-Zn (Iron-Oxygen-Zinc) | V. Raghavan |
377-378 | Al-Fe-Ni-O (Aluminum-Iron-Nickel-Oxygen) | V. Raghavan |
379-380 | Al-Fe-O-Zn (Aluminum-Iron-Oxygen-Zinc) | V. Raghavan |
381-382 | Fe-Mg-Ni-O (Iron-Magnesium-Nickel-Oxygen) | V. Raghavan |
383-384 | Fe-Mg-O-Zn (Iron-Magnesium-Oxygen-Zinc) | V. Raghavan |
385-386 | Fe-O-Si-Zn (Iron-Oxygen-Silicon-Zinc) | V. Raghavan |
387-388 | Fe-O-Sn-Zn (Iron-Oxygen-Tin-Zinc) | V. Raghavan |
389-394 | The Co-Ni-Y (Cobalt-Nickel-Yttrium) System | K. P. Gupta |
395-398 | The Cr-Ni-Re (Chromium-Nickel-Rhenium) System | K. P. Gupta |
399 | Supplemental Literature Review | H. Okamoto |
400 | As-I (Arsenic-Iodine) | H. Okamoto |
401 | Cl-Re (Chlorine-Rhenium) | H. Okamoto |
402-403 | Cl-W | H. Okamoto |
404 | F-Xe (Fluorine-Xenon) | H. Okamoto |
405-406 | P-Te (Phosphorus-Tellurium) | H. Okamoto |
407-408 | Mg-Pd (Magnesium-Palladium) | H. Okamoto |
409-410 | Si-V (Silicon-Vanadium) | H. Okamoto |
411-412 | Sn-Zr (Tin-Zirconium) | H. Okamoto |